Erkennung von intraoperativen Zwischenfällen in der Tiermedizin auf Basis von KI (ERIZT)

Mit modernen KI-Methoden OP-Zwischenfälle rechtzeitig erkennen

© Kukota Ekaterina – stock.adobe.com

Herausforderung

Bei Operationen in der Tiermedizin liegt der behandelnden Ärzteschaft meist nur eine begrenzte Datenmenge vor, da diese naturgemäß seltener durchgeführt werden als dies bei Menschen der Fall ist. Dennoch müssen Vorhersagen von Zwischenfällen sehr genau und zudem transparent und nachvollziehbar sein, da jede Entscheidung das Tierwohl unmittelbar betrifft.

Methodik

Alle Daten, die während der OP auf Überwachungsgeräten aufgezeichnet werden, müssen zunächst in ein für Machine Learning zugängliches Format konvertiert werden. Anschließend werden die konvertierten Daten vorverarbeitet, indem z. B. fehlerhafte Einträge korrigiert bzw. gelöscht und neue Attribute, die anschließend für den Trainingsprozess nutzbringend sein könnten, erstellt werden. Auf dieser Grundlage wird eine Vielzahl von Machine Learning-Algorithmen bezüglich ihrer Eignung für den späteren Produktiveinsatz ausgewertet.

Ergebnis

Als Ergebnis wurde die prototypische Realisierung eines Machine Learning-Modells angestrebt, das die Machbarkeit des Vorhabens demonstriert. Die entwickelte KI soll mit hoher Genauigkeit und möglichst frühzeitig, unter Beachtung von Transparenzgeboten, intraoperative Zwischenfälle erkennen. Neben dieser Kernkomponente wurde auch eine Vorgehensweise von der Datenerfassung bis zur Realisierung des KI-Modells entwickelt und verbessert.

Als wesentliche Erkenntnis aus dem Projekt ergab sich, dass die statistischen Verfahren nur bedingt geeignet waren, da diese über den derzeitigen Verlauf einer Zeitreihe hinaus schlecht generalisieren. Deep-Learning-Verfahren, die über mehrere Operationen hinweg generalisieren, erreichten eine bessere Performanz, deren Ergebnisse wurden im Rahmen von Expertengesprächen mit Tierärztinnen und -ärzten als gut bewertet.

Produkte und Leistungen

Technologie

Digitale Assistenten

Mit Digitalen Assistenten zu mehr Kundennähe. Wir entwickeln ein digitales Assistenzsystem, das auf Ihre Bedürfnisse ausgerichtet ist.

Technologie

Künstliche Intelligenz und Automatisierung

Prozesse mit Hilfe von Künstlicher Intelligenz (KI) optimieren und zukunftsfähig gestalten.

Technologie

ARPOS

Innerhalb des ARPOS-Service-Portals entwickelt das Fraunhofer IAO Lösungen für Prozessmanagement, wissensbasierte Bearbeitung und Workflows rund um das Thema Kfz-Schadenregulierung.

Technologie

Textverstehen

Unternehmen sollen nicht in der Informationsflut untergehen. Wir zeigen Ihnen, wie anhand von Künstlicher Intelligenz Textdokumente automatisch verarbeitet werden.

     

     

     

     

Dienstleistung

Process Mining

Analysieren Sie die tatsächlichen Abläufe im Unternehmen und verbessern Sie Ihre Prozesse nachhaltig.

Technologie

Aikido

Testen Sie selbst: Komplexe Textdokumente mit Hilfe von KI und Sprachmodellen analysieren und auswerten.

Mehr zum Thema Künstliche Intelligenz und datenbasierte Automatisierung

 

Publikation

Potenziale Generativer KI für den Mittelstand

Orientierungshilfe für den bewussten und zielgerichteten Umgang mit Generativer KI.

 

Publikation

Whitepaper: KI-Zertifizierung und Absicherung im Kontext des EU AI Act