Die Innovationsinitiative QuantumBW startet das neue landesweite »QuantumBW Colloquium« auf dem Campus des Fraunhofer-Institutszentrums Stuttgart. Ziel des Colloquiums ist es, den wissenschaftlichen Austausch über Hardware- und Algorithmik-Themen im Bereich Quantencomputing zu fördern, die neuesten Entwicklungen auf diesem Gebiet vorzustellen und den Gedanken des »Co-Developments« von Quantenlösungen voranzutreiben.
Neben der Frage wie die nächste Generation der Computer realisiert wird, ist es ebenso spannend wofür man die »Next-Generation-Computer« einsetzen kann. Vielversprechende Anwendung finden diese in der Kryptographie, im Machine Learning und in der Optimierung. Aufgrund der aktuell noch verrauschten, kleinen Systeme der NISQ-Ära (Noisy Intermediate Scale), ist insbesondere die Klasse der variationellen Quantenalgorithmen interessant. Diese und weitere Themen wie Quantenfehlerkorrektur, Barren Plateaus und Quantum Advantage beleuchten wir im Colloquium an den folgenden Terminen:
Current quantum devises are faulty and one needs to be able to assess the errors which occur during quantum information processing. I will discuss several methods to gain confidence about the correct functioning of quantum devices and to test quantum computations and quantum simulations.
We will describe digital, analog, and digital-analog quantum computing paradigms. Furthermore, we will discuss the possibility of reaching quantum advantage for industry use cases with current quantum computers in trapped ions, superconducting circuits, neutral atoms, and photonic systems.
Quantum computing promises advantages for a number of structured computational problems. While the idea of quantum computing is not new, only within the last a bit more than five years protagonists have set out to actually build such devices to a reasonable scale. The quantum computers we have today are still somewhat noisy and not huge - but then, such devices seemed inconceivable not very long ago, creating an exciting state of affairs. This also comes along with lots of expectations and some hype. This talk will go on a journey deciphering what we can reasonably expect from such machines in the near future. It will present some exciting perspectives concerning achieving industrially relevant applications in machine learning and optimization. It will also debunk some of the most unreasonable of expectations and provide a reality check of what can be achieved for noisy devices. Overall, this will give rise to a ride through the landscape of one of the most exciting and promising future technologies.